
Orri Erling (Program Manager, OpenLink Virtuoso), Ivan Mikhailov (Lead
Developer, OpenLink Virtuoso).

Business Intelligence Extensions for SPARQL

Orri Erling and Ivan Mikhailov

OpenLink Software, 10 Burlington Mall Road Suite 265 Burlington, MA 01803 U.S.A,
{oerling,imikhailov}@openlinksw.com,

WWW home page: http://www.openlinksw.com

Abstract. We believe that the possibility to use SPARQL as a front end
to heterogenous data without significant cost in performance or expres-
sive power is key to RDF taking its rightful place as the lingua franca of
data integration. To this effect, we demonstrate how RDF and SPARQL
can tackle a standard relational workload.
We discuss extending SPARQL for business intelligence (BI) workloads
and relate experiennces on running SPARQL against relational and na-
tive RDF databases. We use the well known TPC H benchmark as our
reference schema and workload. We define a mapping of the TPC H
schema to RDF and restate the queries as BI extended SPARQL. To
this effect, we define aggregation and nested queries for SPARQL.
We demonstrate that it is possible to perform the TPC H workload
restated in SPARQL against an existing RDBMS withut loss of perfor-
mance or expressivity and without changes to the RDBMS.

1 Introduction and Motivation

RDF promises to be a top level representation for data extracted or dynamically
mapped from any conceivable source. Thus, RDF’s chief promise is in the field
of information integration, analysis and discovery. Yet it is difficult to imagine
any business reporting, let alone more complex information integration task that
would not involve aggregating and grouping.

As a data access and data integration vendor, OpenLink has a natural in-
terest in seeing SPARQL succeed as a top level language for answering business
questions on data mapped from any present day data warehouse or other repos-
itory.

This potential role of SPARQL is however fundamentally undermined if
SPARQL cannot perform any part of the database industry’s baseline business
intelligence benchmark, TPC H.

To this effect, we have extended SPARQL with expressions in results, aggre-
gates and grouping and derived tables. These extensions allow a straightforward
translation of arbitrary SQL queries to SPARQL. We call this extended SPARQL
“SPARQL BI”.

We demonstrate the operation of SPARQL BI versions of TPC H queries on
relational data managed by Virtuoso and Oracle. We also demonstrate the same
workload on the same data stored as RDF in Virtuoso.

2 Test Data

We use the TPC H schema mapped to RDF in all our examples. The table names
are directly converted to classes and the column names are directly converted
to predicates in namespace http://www.openlinksw.com/schemas/TPC-H. The
prefix tpch is used to refer to this namespace throughout the paper.

3 SPARQL Extensions

3.1 Expressions

In its proposed recommendation form, SPARQL does not allow returning any
value that is not retrieved through a triple pattern. Expressions are only allowed
in filters but cannot be returned.

We lift this restriction by allowing expressions in the result set.
Consider:

select (?extendedprice * (1 - ?discount))

where {

?line a tpch:lineitem ;

tpch:lineextendedprice ?extendedprice ;

tpch:linediscount ?discount . }

We can shorten the notation as

select (?line->tpch:extendedprice * (1 - ?line->tpch:discount))

where { ?line a tpch:lineitem }

The -> (dereference) operator allows referring to a property without naming
it as a variable. This is exactly equivalent to having a triple pattern binding
a variable to the mentioned property of the subject within the group pattern
enclosing the reference. For a select, the enclosing group pattern is considered
to be the top level pattern of the where clause or in the event of a union, the
top level of each term of the union. Each distinct dereference adds exactly one
triple pattern to the enclosing group pattern, thus multiple uses -> do not each
add a triple pattern. Having multiple copies of an identical pattern might lead
to changes in cardinality if multiple input graphs were being considered.

If a lineitem had multiple discounts or extended prices, then we would get
the cartesian product of both. If a property referenced via -> is absent, the
expression does not get evaluated in the first place.

The optional dereference operator |> will produce an unbound value if the
property does not exist. Further, mentioning the same chain of dereferences
multiple times in the same group pattern will not cause redundant triple patterns
to be added or result in more joining that is necessary.

We further allow expressions in the place of variables in triple patterns. To
scope the above query to orders by customers in France, we could write:

select (?li->tpch:extendedprice * ?li->tpch:discount)

where {

?li a tpch:lineitem .

?li->tpch:l_orderkey->tpch:o_custkey->tpch:c_nationkey

tpch:n_name "France" . }

The sequence of dereferences expands into triple patterns, as in:

... ?li tpch:l_orderkey ?v1 .

?v1 tpch:o_custkey ?v2 .

?v2 tpch:c_nationkey ?v3 .

?v3 tpch:n_name "Frannce" .

3.2 Aggregation

We introduce the sum, count, avg, min and max aggregate functions from SQL.
Their semantics with respect to NULL are inherited from SQL. To count result
rows without regard to any value being defined, count (*) is introduced.

If grouping is desired, aggregate expressions can be combined with non-
aggregate expressions in a selection list. The non-aggregate expressions will
function as grouping columns, i.e. the aggregates are calculated for each dis-
tinct combination of the grouping columns. No special GROUP BY clause is
needed.

select ?l->tpch:l_linestatus count(*) sum(?l->tpch:extendedprice)

where {l a tpch:lineitem }

gives the count and total value of lineitems for each distinct lineitem status.

User defined aggregates from Virtuoso SQL can be used in SPARQL as well,
using the sql: namespace.

3.3 Nesting of Queries and Named Results

SQL allows nesting queries, in effect treating the evaluation of a query as a table
(derived table) or as a value in an expression (scalar subquery).

We allow embedding a SPARQL select in the place of a triple pattern. The
syntax is as in

select ?line

where {

?line a tpch:lineitem .

{ select max (?l2->tpch:extendedprice) as ?maxprice

where { ?l2 a tpch:lineitem } } .

filter (line->tpch:extendedprice = ?maxprice) }

This selects all lineitems with extendedprice equal to the highest extended-
price in the set of lineitems.

We note that we have a SQL-style explicit comparison for joining the nested
select with the outer select. The bindings that are in scope in the pattern con-
taining the nested select are also in scope inside the nested select. In this the
scope rules resemble SQL’ s rules for subqueries.

In Virtuoso SQL and Virtuoso/PL we allow SPARQL queries in all places
where “plain” SQL select could be used, e.g., SQL query can contain SPARQL
subqueries.

4 Sample Queries

Due to space constraints, we chose to pick only two of the twenty-two queries of
the TPC H workload. These were selected because of their relative complexity
and use of nested queries.

The TPC H definition states the business questions for Q15 and Q18 as
follows:

”Q15, The Top Supplier Query finds the supplier who contributed the most
to the overall revenue for parts shipped during a given quarter of a given year.
In case of a tie, the query lists all suppliers whose contribution was equal to the
maximum, presented in supplier number order.”

”Q18, The Large Volume Customer Query finds a list of the top 100 cus-
tomers who have ever placed large quantity orders. The query lists the customer
name, customer key, the order key, date and total price and the quantity for the
order.”

The Q15 SQL text used with Virtuoso is:

select s_suppkey, s_name, s_address, s_phone, total_revenue

from

supplier,

(select

l_suppkey as supplier_no,

sum(l_extendedprice * (1 - l_discount))

as total_revenue

from lineitem

where

l_shipdate >= {d ’1996-01-01’} and

l_shipdate < {fn timestampadd (

SQL_TSI_MONTH, 3, {d ’1996-01-01’}) }

group by l_suppkey) as revenue

where

s_suppkey = supplier_no and

total_revenue = (select max(total_revenue)

from (select

l_suppkey as supplier_no,

sum (l_extendedprice * (1 - l_discount))

as total_revenue

from lineitem

where

l_shipdate >= {d ’1996-01-01’} and

l_shipdate < {fn timestampadd (

SQL_TSI_MONTH, 3, {d ’1996-01-01’}) }

group by l_suppkey) as revenue)

order by s_suppkey;

The corresponding SPARQL BI text is:

sparql

prefix tpch <http://openlinksw.com/schemas/TPC-H/>

select

?supplier ?s_name ?s_address ?s_phone ?total_revenue

where

{

?supplier a tpch:supplier ;

tpch:s_name ?s_name ;

tpch:s_address ?s_address ;

tpch:s_phone ?s_phone .

{

select

?supplier

(sum(l_extendedprice * (1 - l_discount)))

as ?total_revenue

where

{

?lineitem a tpch:lineitem ;

tpch:l_shipdate ?l_shipdate ;

tpch:l_suppkey ?supplier .

filter (

?l_shipdate >= xsd:date (’1996-01-01’) and

?l_shipdate < bif:dateadd (

’month’, 3, xsd:date (’1996-01-01’)))

}

}

{

select max (?all_totals.total_revenue) as ?maxtotal

where

{

{

sparql select

(sum(l_extendedprice * (1 - l_discount)))

as ?total_revenue

where

{

?lineitem a tpch:lineitem ;

tpch:l_shipdate ?l_shipdate ;

tpch:l_suppkey ?l_suppkey .

filter

(

?l_shipdate >= xsd:date (’1996-01-01’) and

?l_shipdate < bif:dateadd (

’month’, 3, xsd:date (’1996-01-01’)))

}

} as all_totals

}

}

filter (?total_revenue = ?maxtotal)

}

order by

?supplier;

The Virtuoso text of Q18 is:

select c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice,

sum(l_quantity)

from lineitem, orders, customer

where

o_orderkey in (

select l_orderkey

from lineitem

group by l_orderkey

having sum(l_quantity) > 250)

and c_custkey = o_custkey

and o_orderkey = l_orderkey

group by c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice

order by o_totalprice desc, o_orderdate;

The SPARQL BI version is:

select ?c_name ?customer ?order ?o_orderdate ?o_totalprice

sum(?l_quantity)

from <http://example.com/tpcd>

where {

?customer a tpch:customer ; foaf:name ?c_name .

?order a tpch:order ; tpch:ordertotalprice ?o_totalprice ;

tpch:orderdate ?o_orderdate ; tpch:has_customer ?customer .

[a tpch:lineitem ; tpch:linequantity ?l_quantity ;

tpch:has_order ?order] .

{

select ?sum_order sum (?quantity) as ?sum_q

where {

[a tpch:lineitem ; tpch:linequantity ?quantity ;

tpch:has_order ?sum_order]

}

} .

filter (?sum_order = ?order and ?sum_q > 250)

}

order by desc (?o_totalprice) ?o_orderdate

5 Experiments

For this test, we had the test data on an Oracle 10G and a Virtuoso 5.0 server
on the same machine. The tables from the Oracle and Virtuoso servers were
attached to another Virtuoso server, which served as the SPARQL front end.

For Q15, Virtuoso SQL gave the answer in 180 ms and with SPARQL the
answer took 3800. For Q18, Virtuoso SQL gave 340 and SPARQL 371 ms.

The large difference with Q15 is due to the SQL compiler choosing a different
plan because the reformulated text has a different structure. Some further tuning
will eliminate the difference.

With the Oracle back end, we obtained the correct answers but our setup
did not pass the queries through to Oracle as a single SQL statement, hence
the performance was less than would have been seen if the queries were natively
submitted to Oracle.

Some further adjustments will result in the queries passing through the
pipeline as single statements, at which point we will have a negligible trans-
lation overhead.

The test database was at 1 per cent scale, hence the results are not about
TPC H performance per se but are solely aimed at verifying that the correct
answers are produced and queries are executed as close to the data as possible.

We also dumped the data as physical triples stored in Virtuoso. Our aim is to
arrange things so that the physical triples version will at no point be more than
three times slower than the equivalent relational setting on Virtuoso, running
with a database scaled to 100G. Reaching this requires some enhancements to
our SQL implementation, specifically for dealing with queries with dozens of
joined tables. We note that we get a self-join for each column referenced. This
work was not completed at the submission deadline.

Since the features discussed were first implemented within days of the sub-
nmission deadline, no tuning or adaptation of the Virtuoso SQL was possible
within the time limit, hence results are not anywhere near final and most inter-
esting experiments had to be left out.

We intend to further study the comparative performance of SPARQL going
to natively stored triples and compare this with SQL performance with single
machine and clustered Virtuoso databases. One line of future work is bench-
marking SPARQL and SQL based vertical storage schemes. We note that the

RDF model is a vertical storage scheme almost by nature. Declaring that triples
with given predicates be stored apart, in a table that keeps only subject and
object results in a column-oriented store.

We further intend to broaden the scope of the present example around TPC
H by including more sources in the mapping. This will demonstrate that the
same queries can be run without loss of performance on a number of similar
but distinct relational database instances. Thus SPARQL does become a data
integration tool that exceeds the capabilities of SQL views merging data from
multiple sources, for example.

6 Conclusions

The work discussed here demonstrates the feasibility of querying existing rela-
tional data through extended SPARQL without loss of performance or expres-
sivity and without any modification to the relational data store in question.

A skeptic might ask what the value of an alternate syntax for SQL is, when
SQL is universally known and applied. We would point out that us bringing
SPARQL on par with SQL for decision support queries is not aimed at replacing
SQL but at making SPARQL capable of fulfilling its role as a language for
integration.

Indeed, we retain all of SPARQL’s and RDF’s flexibility for uniquely iden-
tifying entities, for abstracting away different naming conventions, layouts and
types of primary and foreign keys and so forth.

In the context of mapping relational data to RDF, we could map several
instances of comparable but different schemas to the common terminology and
couch all our queries within this terminology. Further, we can join from this
world of mapped data to native RDF data, such as the data in the Linking
Open Data project. For example, we could join regional sales data to the US
census data set within a single query.

Once we have demonstrated that performance or expressivity barriers do not
cripple SPARQL when performing traditional SQL tasks, we have removed a
significant barrier from enterprise adoption of RDF and open data.

References

1. W3C RDF Data Access Working Group: SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/

2. Transaction Processing Performance Council: TPC-H – a Decision Support Bench-
mark. http://www.tpc.org/tpch/

3. Orri Erling, Ivan Mikahilov: Adapting an ORDBMS for RDF Storage and Mapping.
Proceedings of the First Conference on Social Semantic Web. Leipzig (CSSW 2007),
SABRE. Volume P-113 of GI-Edition - Lecture Notes in Informatics. Bonner Kollen
Verlag, ISBN 978-3-88579-207-9

