
SPARQL and Scalable Inference on Demand

Orri Erling and Ivan Mikhailov

OpenLink Software, 10 Burlington Mall Road Suite 265 Burlington, MA 01803 U.S.A,
{oerling,imikhailov}@openlinksw.com,

WWW home page: http://www.openlinksw.com

Abstract. This paper discusses integrating inference capabilities into
OpenLink Virtuosos SPARQL implementation[1]. Our goal is to do in-
ference at run time and on demand whenever possible, instead of mate-
rializing entailed facts ahead of demand. In an open web scenario, facts
are liable to change, to be retracted, to be contradictory and to be ma-
licious. Therefore, heavy investment in materializing consequences for a
very large body of likely questionable facts is in our view not advisable.
In the same spirit, we support partial query evaluation, so as to return
possibly incomplete results within a fixed response time window.
We present Virtuoso’s run time implementation of owl:sameAs, inferred
identity based on inverse functional properties, generic SPARQL exten-
sions for arbitrary transitive subqueries and partial query evaluation. As
future work, we suggest ways of generalizing these features for support
of arbitrary backward and forward chaining rules.

1 Introduction

OpenLink Virtuoso[6] is a general purpose RDBMS with extensive SPARQL
and RDF support. The background of the present work is hosting the entire
Linked Open Data[5] cloud and various web crawls in Virtuoso’s RDF store.
From extensive experimentation with the Billion Triples Challenge data set[7][9],
we find that many interesting uses of the data apply only to a fraction of the
corpus and require run time intelligence, specifically for inferring identity and
transitivity. Also, since the corpus is large, almost all queries use a combination of
group by and order by, with occasional scalar subqueries. Returning individuals
only, without ranking by frequency of occurrence or other aggregate properties
does not generally yield a general view on the data set.

Therefore we have extended SPARQL in all the ways required for ad hoc
exploration and analysis of complex data without, as a general rule, relying on
materialization of entailment as a preprocessing step. This includes addition of
aggregation, grouping and subqueries[3] as well as the features discussed below.

An often encountered counter-argument to publishing SPARQL end points
is that the Web 2.0 world essentially never gives SQL access to their data, even
though the data is generally stored in SQL databases. There are dual reasons
for this: 1. data is proprietary, thus offering it for economical reuse by arbitrary
third parties is not desired in terms of the business model and 2. SQL queries

over large corpora, such as the millions of end user records and tens of millions
of related rows of relational data in large Web 2.0 sites are potentially very
expensive and constitute a very concrete denial of service threat.

The Linked Open Data world has a slightly different starting point. The
data is usually not proprietary and the schema/ontology is open, with a view
on making data ad hoc joinable. Web 2.0 silos on the other hand optimize their
data model for their relatively fixed workload and do not publish their schema.

Thus, for supporting arbitrarily complex ad hoc queries on very large corpora
within bounded response times, we introduce an anytime query approach that
applies to all types of queries and always returns the most complete answer that
could be arrived at within the resource constraints. Answers indicate whether
they are complete and come with a summary of resource utilization.

The examples below use the Yahoo and Falcon web crawls from the Billion
Triples Challenge data set as sample data. The sample size is 135M triples, 20GB
worth of used database pages. All the samples are run on a single 2.0GHz 2x2core
machine with 8G RAM. The software is Virtuoso 6 Cluster with the data in 4
partitions on the same machine.

2 Transitivity

OWL allows defining a property as transitive. Typically, for a situation where
{ X P Y } and { Y P Z } and P is transitive, the implied fact { X P Z } is
added to the corpus of data by a reasoner such as forward chainig engine of
Jena’s GenericRuleReasoner[12]. There are however many cases, such as for ex-
ample social network data, where the count of transitive foaf:knows[11] steps
is significant, as well as the reciprocality of the foaf:knows relation etc. In such
densely connected and constantly changing graphs, it is difficult to keep the
implied facts up to date if all the consequences are materialized.

Jena introduces a path extension for SPARQL[13]. This allows for exam-
ple saying that {<Alice> foaf:knows* ?x}, meaning that ?x is bound to the
transitive closure of all people <Alice> knows.

In Virtuoso, we take a more general approach and allow an arbitrary subquery
to be made transitive. This has the advantage of being able to also retrieve
properties of steps and to have complex conditions for what conditions define
relatedness. In the social network example, we can for example return the graph
where the foaf:knows triples come from. In a project management case, we
could return the length of time associated with each transitive step and so forth.

The general form of the transitive subquery is:

{ select ?v1, ... (from from-clause)* where where-body }
option (transitive t in (variables) t out (variables)
(t step (variable) as alias)* (t direction direction)?
(t min (const-expn))? (t max (const-expn))?
t distinct? t no cycles? t cycles only? t shortest only?)

This may occur anywhere in the place of a triple pattern in a SPARQL query.
The variables in the selection are designated as either input, output or data.
Conditions in the enclosing query must provide bindings for all input variables,
or all output variables or both. For example, we could define sameAs using this
feature as follows:

select ?syn where {

{ select ?x ?syn where {{ ?x owl:sameAs ?syn }

union { ?syn owl:sameAs ?x } } }

option (transitive t_in (?x), t_out (?syn),

t_distinct, t_min(0)) }

In order to use this to iterate over the sameAs closure of <Alice> we would
write

select ?syn where {

{ select ?x ?syn where {{ ?x owl:sameAs ?syn }

union { ?syn owl:sameAs ?x } } }

option (transitive t_in (?x), t_out (?syn),

t_distinct, t_min (0))

filter (?x = <Alice>) }

In this case, we provide a binding for ?x in the filter outside of the transitive
subquery. The subquery therefore is made to run from in to out. The same effect
would be accomplished if we bound ?syn and select ?x, the designations of in
and out are arbitrary and for transitive steps that can be evaluated equally well
in both directions this makes no difference.

To find out what graphs contain owl:sameAs for Dan York, we do

select ?g count (*) where {

{select ?x ?alias ?g where {

{ graph ?g {?x owl:sameAs ?alias }}

union {graph ?g {?alias owl:sameAs ?x}}}}

option (transitive, t_in (?x), t_out (?alias),

t_distinct, t_min (1)) .

filter (?x=<http://www.advogato.org/person/dyork/foaf.rdf#me>) .

} group by ?g order by desc 2 limit 30;

For each sameAs alias, this will produce the path from the source, one result
row per step, with ?g bound to the graph where the sameAs statement was
found. Thus graphs with immediate sameAs get counted extra times, once for
the immediate sameAs and once for each path containing this sameAs as an
intermediate step.

If we bind both ?x and ?alias, then we get a row of result if there is some
combination of owl:sameAs that implies that ?x and ?alias are the same.

We can use this feature to return information about how things are related.
For example, using the social web data from the Billion Triples Challenge[8], we
can write:

select ?o ?dist ((select count (*) where {?o foaf:knows ?xx}))

where {

{ select ?s ?o where { ?s foaf:knows ?o } }

option (transitive, t_distinct, t_in(?s), t_out(?o),

t_min (1), t_max (4), t_step (’step_no’) as ?dist) }

filter (?s = <http://myopenlink.net/person/kidehen#this>)

} order by ?dist desc 3 limit 50

This query takes all the people known by kidehen, to a depth between 1
and 4 applications of the subquery. It then sorts them by the distance and the
descending count of connections of each found connection. This is equivalent to
the default connections list shown by LinkedIn[14].

More interestingly, we can find the distinct paths between two points in a
network:

select ?link ?g ?step ?path

where {

{ select ?s ?o ?g where {graph ?g {?s foaf:knows ?o }}}

option (transitive, t_distinct, t_in(?s), t_out(?o),

t_no_cycles, t_shortest_only, t_direction 3,

t_step (?s) as ?link, t_step (’path_id’) as ?path,

t_step (’step_no’) as ?step)

filter (?s = <http://myopenlink.net/person/kidehen#this>)

filter (?o = <http://www.advogato.org/person/mparaz.rdf#me>)

} limit 20

This query binds both the t in and t out variables. The texttt?g is left as
a free variable. The ?g is left as a free variable. Also, specifying ?s and the
system defined constants step no and path id as with t step, we get for each
transitive step a row of results with the intermediate binding of ?s, the count of
steps from the initial ?s and a distinct identifier for the individual path, since
there can be many distinct paths that link the ?s and ?o specified in the filter.

For evaluating this query, we note that the { ?s foaf:knows ?o } step can
be evaluated equally well from ?s to ?o as the reverse, given the index scheme
in use on the system. Thus the SPARQL/SQL compiler expands the query into
two transitive subqueries, one starting from ?s and the other from ?o. The result
is considered complete when the transitive closure being expanded breadth first
from ?s first intersects the transitive closure expanded breadth first from ?o or
vice versa. The t shortest only flag means that only paths of length equal to
the shortest path found will be returned. The t distinct switch means that
not all possible paths to intermediate steps on the complete result paths are
generated.

After the set of shortest paths is found, the results are returned as a result
set, one row per step in each path.

3 Cost Model and Optimization

When a query contains multiple transitive subqueries joined with each other,
the optimal query plan is not readily obvious. The join order options are the
same as in the case of any subqueries with distinct or aggregation. The presence
of distinctess or aggregation means that the subquery cannot simply be inlined,
with component patterns becoming direct component patterns of the enclosing
group pattern.

The optimizer must be able to distinguish between tree and graph shaped
cases. If the step consists of a predicate with a generally asymmetric cardinality
like part-of, where there are more subparts than super-parts, the compiler will
naturally prefer the path from the leaves to the root to the path from root to
leaves when determining whether two points are parent and child, for example.

It turns out that the general cardinality statistics of the predicates making up
the step provide reasonable grounds for such determinations. It is also possible
to explicitly state that a transitive subquery must be evaluated from in to out,
out to in or from both ends.

4 owl:sameAs and Identity with Inverse Functional

Properties

While powerful, the general form of the transitive subquery is quite verbose and
queries making extensive use of such become easily quite unreadable. For this
reason we offer two built-in special cases of transitive queries: One for automatic
run-time expansion of owl:sameAs and another for inferring identity between
two subjects that share a value of an inverse functional property.

The default way of dealing with identity is ”smooshing” the supposedly same
URI’s together. This means that all the properties of all the allegedly equal
subjects are explicitly asserted for each. If the descriptions are identical, there
is no new information but if not, we have duplication. Also, this process loses
information since one no longer knows what was originally stated and what was
copied.

4.1 Exceptions

For example, we could think that subjects that have an equal foaf:mbox sha1sum

are the same. This may be so, except when the SHA1 sum is the one for
"mailto://". This is filled in by many FOAF generators for an empty email
address field. Thus, for each distinct IFP, we allow declaring a set of values
which will be considered null, i.e. sharing a null value with another subject will
not imply equality.

4.2 Distinctness

When multiple URI’s mean the same entity, we can get problems with counting,
distinct and grouping. Thus, for better quality of results, we should, for purposes

of distinct or group by, consider two instances that are the same through
owl:sameAs or through sharing of IFP’s to be the same.

Whenever bindings that come from patterns for which the sameAs of IFP
inference is enabled are used in a distinct or group by, the SPARQL compiler
inserts an extra operation for canonicalizing the value. Since the values in ques-
tion are IRI’s, each with a unique internal ID, for convenience, we use the one
with the smallest internal ID as the canonical IRI for these purposes.

Using a subset of the Billion Triples data set, we get:

select count (*) where {?x foaf:knows ?y}

1080205

define input:same-as "yes"

select count (*) where {

{select distinct ?x ?y where { ?x foaf:knows ?y}} }

1075161

4.3 Examples

Consider the graph:

<john1> <name> "John" .

<john2> <name> "John" .

<john1> <address> "101 A street" .

<john2> <address> "102 B street" .

<john2> <knows> <mike> .

<mike> <knows> <john1> .

<mike> <knows> <john2> .

We declare <name> to be inversely functional in the context below called
ifps.

define input:inference "ifps"

select *from <ifps> where {<john1> <address> ?a};

101 A street

102 B street

We get both addresses because <john1> and <john2> are the same by virtue
of being called "John".

define input:inference "ifps"

select distinct ?x from <ifps> where { <mike> <knows> ?x};

We get only one because <john1> and <john2> are the same.

5 Comparison With Materialization

To provide a baseline, we materialized entailment of identity, where identity
was defined as having a foaf:name in common and being both instances of
foaf:Person. We used the Yahoo and Falcon data sets from the Billion Triples
Challenge data set for the experiment. in the unmodified data, there were 3.32M
triples in any graph where the subject was in some graph a foaf:Person and
had a foaf:name in some graph. This is defined by the below query.

select count (*) where {

{select distinct ?person where {?person a foaf:Person}}

filter (bif:exists (

(select (1) where { ?person foaf:name ?nn})))

?person ?p ?o }

We collapsed these all into one graph, choosing a canonical ID for all the
foaf:Person subjects with the same foaf:name and gave this subject all the
properties of all the synonyms. If the object was a member of this set of subjects,
the reference was canonicalized. This gave us 2.17M triples. Then we looked
at leaving the identities be but collapsing all the persons into a single graph
and giving each of the subjects all the properties of all other subjects with the
same foaf:name that also were foaf:Persons. This gave us 167.4M triples. No
reasoner was used, we did the operations in SQL so as to get the performance
baseline without unknown overheads.

Thus, if the set is static, normalizing identities pays and copying all to all
is not profitable, as one would expect. Both approaches lose the provenance
information since all are inserted into the same graph. Performing all these
manipulations in SPARUL and SQL is error-prone and takes time. Inserting
167M triples does not happen in interactive time even with a lot of hardware.
On the test system (4 core Xeon), inserting just one key of the 167M triples took
35m, for 77K inserts per second. On a larger system we could have 100-200K
full triples per second. This is still slow. And if we have tens of users doing the
same thing at the same time, it is worse still. Actual throughput depends on
many factors beyond the scope of this paper but as a ballpark figure for such
materialization, we are talking low hundreds of thousands of triples per second
for a cluster of 2–4 commodity servers.

If the logic for inferring identity is more complex than comparing IFP values,
doing the inference as a preprocessing step makes sense. The preprocessing step
can insert owl:sameAs triples that are then followed at run time. Inserting a
synthetic IFP value shared by all subjects that are to be considered equivalent
is a little more efficient since these do not have to be followed transitively, like
owl:sameAs. Such materialization should be done in a separate graph so as not
to contaminate the source data.

Copying properties between IRI’s considered equivalent is in general discour-
aged.

6 Partial Query Answering

The Linked Open Data community has recently seen discussion about the safety
and wisdom of offering publicly available SPARQL end points. Also, projects
such as Fly Web[15] have experience with hosting end points in Amazon EC2[16]
and/or other cloud computing providers. The observation is that users, once they
are given the option to compose queries, will compose complex queries that will
take long or not complete at all. To this effect, Fly Web has installed diverse
restrictions in front of their Jena based back end.

Our approach is different. From Dbpedia onwards, we have had public end
points with processing timeouts enforced by the back end database. This is
also not perfect since many interesting questions will end in a timeout, which
is completely uninformative as concerns the data itself or the query and says
nothing about the possibilities of further scoping the search.

When scaling the Linked Data model, we have to take it as a given that the
workload will be unexpected and that the query writers will often be unskilled
in databases. Insofar possible, we wish to promote the forming of a culture of
creative reuse of data. To this effect, even poorly formulated questions deserve
an answer that is better than just timeout.

If a query produces a steady stream of results, interrupting it after a certain
quota is simple. However, most interesting queries do not work in this way. They
contain aggregation, sorting, maybe transitivity.

When evaluating a query with a time limit in a cluster setup, all nodes
monitor the time left for the query. When dealing with a potentially partial query
to begin with, there is little point in transactionality, thus timeouts will occur
approximately at the same time in all places, lock waiting not being involved. A
read committed query will never block since it will see the before-image of any
transactionally updated row.

Thus, when having a partitioned count, for example, we expect all the par-
titions to time out around the same time and send a ready message with the
timeout information to the cluster node coordinating the query. This timeout
differs from a run time error in that it leaves the query state intact on all partic-
ipating nodes. This allows the timeout handling to come fetch any accumulated
aggregates.

Thus, after activity has timed out, the cluster node coordinating the query
can read through the execution plan and find the first/innermost aggregation
step that was interrupted. No more information will be added to this aggregate
state. Thus the query graph nodes that produce more solutions for the aggregate
can be cancelled. Instead the aggregated data can now be read and fed to the
next stage, for example, the state of a group by can flow into an order by for
sorting. Since this is a continuation of the query evaluation, the timeout is reset
and some extra time is allocated for postprocessing. If this is interrupted by a
new timeout, then results that were unprocessed at this aggregation step are
abandoned and processing moves to the output of the next outer aggregation.
In this way, any query is guaranteed to finish in a fixed number of steps, each
terminated by timeout or by natural completion.

A transitive operation is processed like an aggregation. If a timeout interrupts
it, no more results are generated and the results known to date are sent onward.
The same applies to subqueries. Typically, if a subquery is at the end of the
plan, like in the query counting the friends of friendsand sorting by this count,
we will be running the subquery concurrently for a large number of bindings. If
this is interrupted, we have multiple partial counts that are then used as they
are.

To make this more concrete, let us consider a query that looks for people with
a common interest which few people share and who do not know each other.

sparql select ?i ?cnt ?n1 ?n2 ?p1 ?p2

where {

{select ?i count (*) as ?cnt where {

?p foaf:interest ?i}

group by ?i

}

filter (?cnt > 1 && ?cnt < 10) .

?p1 foaf:interest ?i .

?p2 foaf:interest ?i .

filter (?p1 != ?p2 &&

!bif:exists ((select (1) where {?p1 foaf:knows ?p2 })) &&

!bif:exists ((select (1) where {?p2 foaf:knows ?p1 }))) .

?p1 foaf:nick ?n1 .

?p2 foaf:nick ?n2 .

} order by ?cnt limit 10

The result set has an interest, the count of people having this interest, two
person URI’s and their foaf:nick’s.

The first subquery counts the interested for each interest. The part after this
finds two different people with the interest. The next filter checks that they do
not know each other. Finally the foaf:nicks are retrieved.

A sample run against the Yahoo and Falcon crawls gives us:

http://www.livejournal.com/interests.bml?int=zui

2 zuicidal xcaddlecott_ nodeID://5104696 nodeID://0380826

http://www.livejournal.com/interests.bml?int=zui

2 xcaddlecott_ zuicidal nodeID://0380826 nodeID://5104696

http://www.livejournal.com/interests.bml?int=lt.+george

2 falxxx bitsofstephen nodeID://4697073 nodeID://3662566

...

The first thing to time out is the subquery counting the interests. Then the
operations feeding the final order by time out. After this the order by returns
what state is accumulated. Thus the query produces results in no more than 3
timeouts worth of time.

As a point of comparison, the full evaluation on the Yahoo plus Falcons
sample takes 165 seconds whereas the above portion run takes 3. The resource
summary line for the full query is

22.56MR rnd 1.102GR seq 10P disk 1.341GB / 102.7K messages

(Numbers are explained below).
We note that partial results always satisfy all the query criteria. The excep-

tion is that when an aggregate is used as a criterion, as in the above query, the
aggregate value may be based on incomplete data.

6.1 Resource Utilization Metrics

When a query is only partly evaluated, it is necessary to have an idea of how
much work went into evaluating it and to have an idea of what percentage of
the data set was accessed. Also, for purposes of billing for resource utilization,
it is useful to be able to demonstrate the actual utilization. A query by query
breakdown of resource utilization is also useful for distinguishing between having
a heavily loaded system and a poorly optimized or overly complex query.

To this effect, we gather the count of all single row random accesses, all
sequentially accessed rows, all disk reads and the byte and message count of
cluster interconnect messages on behalf of a query. Whenever a partial result
is returned, the result set ends with an error mentioning these metrics. These
metrics are also programmatically available.

For example

sparql select count (*) where {?s ?p ?o};

1933805

*** Error S1TAT: [Virtuoso Driver][Virtuoso Server]RC...:

Returning incomplete results, query interrupted by result timeout.

Activity: 4R rnd 1.933MR seq 7.28KP disk 939B / 9 messages

This is 4 random lookups, one per server, the count’s worth of sequential
fetches, 28000 pages read from disk, 9 messages between cluster nodes for a
total of 939 bytes.

7 Implications for Scalability

As discussed in [4] the key requirement for scalability on clusters is optimization
of message flow, request batching and latency tolerance. All the work presented
here is ipso facto optimized for these operating conditions.

As seen in the previous section, distributed evaluation of partial queries dif-
fers only little from single process evaluation of same.

For transitivity, especially when doing this with owl:sameAs, where no or few
synonyms are expected per each binding but checking for these is required, we
must process the owl:sameAs lookup for batches of several thousand bindings
at a time. After enough distinct bindings of a variable are gathered, the lookups

are dispatched to the partitions responsible for the data. Results are received
and if synonyms are found, these are fed back into the process. The transitive
closure is constructed once per distinct binding.

The IFP identity inference is similar, except that it has a maximum depth
of 1, i.e. all matches are found in the first lookup.

8 Future Work

We plan to generalize the Virtuoso transitivity support for evaluating arbitrary
backward chaining rules. In such a situation, a step would produce two sorts
of outputs: Bindings that are solutions for further processing in the query and
lists of sub-goals from rule bodies whose heads matched the input bindings. Rule
bodies can be thought of like SPARQL queries and they can be optimized as
such, for example as concerns join order when matching physical data. When
invoking a rule from a rule, one must pass enough state to allow the processing
of the invoked rule to continue once the invoking rule produces bindings. This
is no different from an implementation of Prolog.

To maintain good performance on a cluster of machines, we will run with a
large set of concurrent bindings. When matching patterns to partitioned data,
messages will be batched together and join order optimized as in regular queries.

9 Conclusions

We believe the features discussed herein to be essential for widespread exploita-
tion of linked data. By eliminating potentially hours long preprocessing of IFP’s
and sameAs triples for identity, we allow the users to decide what sets of sameAs
assertions they will trust or wish to see, changing this from query to query. Also,
the sets of IFP’s that will be considered as constituting identity are a matter
of use case and opinion. Keeping data sets free of forward chained extra is also
important for database performance. Database performance most critically de-
pends on having things in cache. A thousand of random lookups can easily be
made in the time of a single disk read. The likelihood of disk access increases
if data is blown up to double size by forward chaining. A blow up from 1G to
2G is not significant on the desktop but for clusters, whether one needs 128G or
256G of RAM to have acceptable RAM to disk ratio already makes a significant
difference in cost.

Also, providing partial answers in guaranteed time goes a long way towards
dissolving the fear of publishing data for open query. For users, it makes the
data discovery process more interactive and hence more rewarding. Avoiding
materialization of entailment in many cases also makes it possible to make queries
on the spur of the moment, without having to design queries days in advance and
then waiting for the needed materialization. Materialization is not excluded in
the cases where it is really justified, though. If one knows what materialization
is needed, then one already has an idea of the workload profile and is no longer
in the realm of the pure ad hoc.

Many of the queries discussed in this paper are live on the web in OpenLink’s
billion triples demo or its successors at http://b3s.openlinksw.com. We also
plan to offer the software with pre-loaded data on Amazon EC2.

We believe that the techniques discussed here will significantly contribute
to low-cost, creative use of structured data on the web. Together with SPARQL
federation, these will enable new types of information value-add services, a whole
ecosystem of mesh-ups.

References

1. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. Proceedings of the
1st Conference on Social Semantic Web (CSSW), 2007, Leipzig, Germany. LNI 113
GI 2007, ISBN 978-3-88579-207-9: 59-68

2. Erling, O., Mikhailov, I.: Integrating Open Sources and Relational Data with
SPARQL. The Semantic Web: Research and Applications, 5th European Semantic
Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008,
Proceedings. LNCS 5021 Springer 2008, ISBN 978-3-540-68233-2: 838-842

3. Erling, O., Mikhailov, I.: Business Intelligence Extensions for SPARQL.
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSArticles/

VOSArticleBISPARQL2.pdf

4. Erling, O., Mikhailov, I.: Towards Web-Scale RDF.
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSArticles/

VOSArticleWebScaleRDF.pdf

5. Linked Data — Connect Distributed Data across the Web.
http://linkeddata.org/

6. OpenLink Universal Integration Middleware — Virtuoso Product Family.
http://virtuoso.openlinksw.com/

7. Semantic Web Challenge. http://challenge.semanticweb.org/
8. Billion Triples dataset. http://www.cs.vu.nl/ pmika/swc/btc.html

9. OpenLink Billion Triple Demo queries. http://b3s.openlinksw.com/
10. OpenLink Billion Triple Demo: Social Connections a la LinkedIn.

http://b3s.openlinksw.com/search.vsp?q=6

11. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.91.
http://xmlns.com/foaf/spec/20071002.html

12. Reynolds D.: Jena 2 Inference support.
http://jena.sourceforge.net/inference/

13. Seaborne A. (ed.): Jena SPARQL Extensions.
http://jena.hpl.hp.com/wiki/SPARQL Extensions

14. LinkedIn – Business-Oriented Social Networking.
http://www.linkedin.com/static?key=company info

15. FlyWeb — Linking Laboratory Image Data with Public Databases and Publica-
tion Repositories
http://www.jisc.ac.uk/whatwedo/programmes/resourcediscovery/

flyweb.aspx

16. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/

