
Towards Web Scale RDF

Orri Erling

OpenLink Software, 10 Burlington Mall Road Suite 265 Burlington, MA 01803 U.S.A,
oerling@openlinksw.com,

WWW home page: http://www.openlinksw.com

Abstract. We are witnessing the first stages of the document web be-
coming a data web, with the implied new opportunities for discovering,
re-purposing, ”meshing up” and analyzing linked data. There is an in-
creasing volume of linked open data and the first data web search engines
are taking shape. Dealing with queries against the nascent data web may
easily add two orders of magnitude in computing power requirements on
top of what a text search engine faces. Queries may involve arbitrary
joining, aggregation, filtering and so forth, compounded by the need for
inference and on the fly schema mapping.
This is the environment for which Virtuoso Cluster Edition is intended.
This paper presents the main challenges encountered and solutions ar-
rived at during the development of this software product.
We present adaptations of RDF load and query execution and query
planning suited for distributed memory platforms, with special emphasis
on dealing with message latency and the special operations required by
RDF.

1 Introduction

Virtuoso is a general purpose RDBMS with extensive RDF adaptations.
In Virtuoso, RDF data can be stored as RDF quads, i.e. graph, subject,

predicate, object tuples. All such quads are in one table, which may have different
indexing depending on the expected query load.

RDF data can also be generated on demand by SPARQL queries against a
virtual graph mapped from relational data in Virtuoso tables or tables managed
by any third party RDBMS. The ”relational-to-RDF mapping” capability is
further described in [1]; this paper limits itself to discussing physically stored
RDF quads.

We recognize two main use cases of RDF data, which we may call the data
warehouse and the open web scenario. The data warehouse is built to serve a
specific application and can be laid out as a collection of relatively few graphs
with well defined schemes. Since the application is known, domain experts can
specify what inference is relevant and the results of such inference can often be
forward chained. Since data are loaded through custom ETL procedures, the
identities of entities can often be homogenized at load time, so that the same
URI ends up standing for the same thing even when the identifiers in the original
data may differ.



The open web use case is found when crawling data from the web for search or
web analytics or linked data mech-ups. Data are often automatically discovered
and provenance becomes important and it is no longer possible to exhaustively
list all graphs that may participate in a query’s evaluation. Forward chaining in-
ferred data becomes problematical due to large volumes, heterogeneous schemes,
relative abundance of SameAs links and so forth. Also, web scale data volumes
will typically require redundant infrastructure for uptime due to expected equip-
ment and network failures.

Virtuoso Cluster Edition is intended to be configurable for both use cases.

2 Database Engine

The Virtuoso DBMS and its main RDF oriented features are described in [2].

Virtuoso has a general purpose relational database engine enhanced with
RDF-oriented data types such as IRI’s and language and type tagged strings.

Virtuoso makes extensive use of bitmap indices for improving space effi-
ciency[8]. The default index layout is GSPO (graph, subject, predicate, object)
as the primary key and OPGS as a bitmap index. These two indices are usually
adequate for dealing with queries where the graph is known.

For cases where the graph is left open, the recommended index layout is
SPOG for primary key, OPGS, GPOS and POGS as bitmap indices. The bitmap
index means that in the case of OPGS for example, for each distinct OPG (object,
predicate, graph) there is a bitmap with a 1 bit corresponding to each subject
which has object O as a value of property P in graph G.

With typical RDF data, such as DBpedia ver.3[3] the bitmap index takes
about 60% of the corresponding non-bitmap index.

Both regular and bitmap indices use key compression which collapses 64
bit id’s into 16 bits when the id is within an integer increment of 16 from a
previous id on the same page. Common prefixes for strings are also eliminated.
An index compressed in this manner, using 64 bit id’s takes 56% of the space a
non-compressed index with the same content but with 32 bit id’s takes.

After key compression is applied, using gzip gives a further almost 50% gain,
i.e. 95% of all 8K pages drop to under 4K. Many pages compress to less than this
but the percentage of pages that do not fit in the target compressed size must
be kept small to maintain locality. The cost of compression is low, i.e. about 600
microseconds for compressing a page and a quarter of this for uncompressing.
Pages in cache must be kept uncompressed since a random access of one triple
out of hundreds of millions is only around 4-5 microseconds for data in memory,
thus applying gunzip at each of the usually 4 index tree levels would increase
the time to about 600 microseconds. Thus stream compression is not good for
database disk cache but does make for smaller files, easier backup and better
utilization of the hardware/OS disk cache.



3 Query Planning

Optimizing SPARQL queries against a quad store is not fundamentally different
from optimizing SQL against a general purpose RDBMS. Still, regular SQL
optimization statistics do not provide the requisite level of detail for RDF use
cases. Therefore, for a cost model to work well with RDF, it must be able to
guess a match count for quads where any combination of GSPO is either equal
to a constant, equal to a value known only at query time or left open.

Precalculated histogram style statistics do not answer these questions very
well. This is why Virtuoso takes the approach of sampling the database at query
optimization time. When for example G and S are given, it is efficient to get
a ballpark count of the P, O tuples matching by simply looking up the first
match and counting matches on the same page. If the page ends with a match,
also count the pages referenced from the parent of this page if they begin with
a match but do not read these, just assume their average row length to be the
same as that of the first leaf page. For low cardinality cases this often gives exact
counts since all the matches are on a page, for high cardinality cases, taking a
single page sample can often hit within 70% of the count when the count is in
the millions.

Once the cardinalities are known, costing the queries is no different from SQL
and is handled by the same code.

One difference with SQL is that hash joins are almost never preferred for
RDF data. The reason is that there pretty much always is an index that can be
used and that a full table scan is almost unknown.

4 On Shared Memory MP and Latency

A multicore processor running a database will not deliver linear scale even when
there is a query per core and the queries do not have lock contention. As a rule
of thumb, a 4 core Xeon runs 4 query streams in 1.3 times the time it takes to
run one of the streams, supposing the queries do not hit exactly the same data
in the same order, have the data in memory and do not wait for locks. This is
roughly true of Virtuoso and other databases.

This is a best case. The worst case can easily destroy any benefit from SMP. If
a thread has to wait for a mutex, the cost of the wait can be several microseconds
even if the mutex were released 100 ns after the wait started. If there is a pool
of worker threads for serving a job queue, evenever the queue goes empty will
cost about this much also. We remember that a single triple lookup is about
4 us. Thus, spinning a thread to do a background single triple operation makes
no sense. At least a dozen operations have to be dispatched together to absorb
the cost of waiting for a thread to start and eventually blocking to wait for its
completion. One must never think that multithreading is an end in itself.



5 On Networks and Latency

A round trip of sending one byte back and forth between processes on the same
CPU takes as much as 20 us real time over Unix domain sockets. Adding thread
scheduling to this, as would be found in any real server process, makes the round
trip 50 us. The same takes about 140 us on a 1Gbit Ethernet with no other traffic.

We have a test program which runs n threads on each node of a cluster. Each
of these threads sends a ping carrying x bytes of payload to every other node of
the cluster and waits for the reply from all before sending the next ping. This
creates a full duplex traffic pattern on between all pairs of cluster nodes with
intermittent sync.

4 processes on 4 core SMP box:
Message length 1000 10000 100000
Aggregate round trips/s 37000 17200 2380
Aggregate MB/s 74 329 455

4 processes on 4 extra large AMI’s on Amazon EC2:

Message length 1000 10000 100000
Aggregate round trips/s 10000 3500 950
Aggregate MB/s 20 67 181

The round trips count is the count of messages sent by any node divided by
2 x the duration in seconds. The MB/s is the sum total of data sent by all nodes
during the interval divided by the length of the interval.

Comparing these latencies with a single triple in memory random access
time of 4 us shows that clustering is not an end in itself. The principal value
of clustering is the fact that there is no limit to the amount of RAM or RAM
bandwidth.

Thus, it is evident that no benefit can be had from clustering unless messages
are made to carry the maximum number of operations possible.

6 Partitioning vs Cache Fusion

Clustered databases have traditionally partitioned data between machines ac-
cording to the values of one or more columns of a table. Another approach is
cache fusion as in Oracle RAC[4]. With a cache fusion database, all machines
of the cluster see the same disks but keep their local cache of this and have a
cache coherence protocol for managing concurrent update. We have not mea-
sured Oracle RAC but it is our impression that either an index lookup must be
sent to the machine that holds the next page needed by the lookup or that the
page must be transferred to the node making the lookup. In the latter case, we
quickly get the same working set cached on all nodes. In the former case, we
have a message round trip per page traversed, typically 4 round trips for a 4
level index tree. Either seems prohibitive in light of the fact that a single lookup
is a few microseconds when all the data is local and in memory. This is true of
Oracle as well as Virtuoso.



Due to this we decided to go for partitioning. Most databases specify parti-
tioning at the table level. We specify it at the index level, thus different keys of
the same table may reside on different machines.

Proponents of cache fusion correctly point out that users do not know how to
partition databases and that repartitioning a big database is next to impossible
due to resulting downtime. The difficulty is reduced in the case of RDF since
only a few tables are used for the data and they come pre-partitioned. The
repartitioning argument is still in part valid.

We recognize that a web scale system simply cannot depend on a once and
for all set partitioning map or require reinserting the data when reallocating
hardware resources. Google’s Bigtable[5] and Amazon’s Dynamo[6] both address
this in different ways.

With Virtuoso, we have hash partitioning where the hash picks a logical
partition out of a space of n logical partitions, where n is a number several times
larger than the expected maximum machine count. Each logical partition is then
assigned to a physical machine. When the machine allocation changes, logical
partitions may be moved between nodes. When a partition is being moved, it
continues to be served from the machine initially hosting it but a special log is
kept for updates that hit already copied rows of the partition. Once the copy is
complete, the partition is made read-only, the log is applied to the new host and
subsequent queries are routed to the new host of the logical partition.

Repartitioning is still a fairly heavy operation but does not involve down-
time. Since one database file set hosts many logical partitions, databases can
be allocated unequal slices according to hardware capacity. Still, more flexibility
could be had if each logical partition had its own database file set. Then moving
the partition would be a file copy instead of a database insert + delete of the
logical content. The latter arrangement may be implemented later but was not
done now due to it involving more code.

7 Latency Tolerant Load and Query Execution

7.1 Load

When loading RDF data, the database must translate between IRI’s and literals
and their internal id’s. It must then insert the resulting quad in each index. With
a single process, as long as no data needs to be read from disk, the load rate is
about 15Kt (kilotriples) per core.

Making a round trip per triple is out of the question. The load takes se-
ries of 10000 triples, and then for each unique IRI/literal, sends the request to
allocate/return an id for the node to the cluster node responsible for the par-
tition given by the name. Whenever all the fields of the triple are known, each
index entry of the triple gets put in the inserts queued for the box holding the
partition. In this way, a batch of arbitrarily many triples can be inserted in a
maximum of 4 round trips, each round trip consisting of messages that evenly
fan out between machines.



In this way, even when all processes are on a single SMP box, clustered load
is actually faster than single process load. The reason is that single process load
suffers from waits for serializing access to shared data structures in the index.
We remember that a single mutex wait takes as long as a full single key insert,
i.e. 5–6 us.

7.2 Query

An RDF query primarily consists of single key lookups grouped in nested loop
joins. Sometimes there are also bitmap intersections. Most of result set columns
are calculated by function calls since the internal ids of IRI’s and objects must
be translated to text for return to the application.

The basic query is therefore a pipeline of steps where most steps are indi-
vidually partitioned operations. Sometimes consecutive steps can be partitioned
together and dispatched as a unit.

The pattern

{? a ub:Professor . ?x teacher_of <student> }

is a bitmap intersection where the professor bits are merge intersected with
the teacher of bits of <student>.

{ ?x a ub:Professor . ?x teaches_course ?c }

is a loop join starting with the professor bitmap and then retrieving the
courses taught from an index.

The whole query

select * from <lubm> where { ?x a ub:Professor ; ub:AdvisorOf ?y }

is a pipeline of 4 steps, one for translating the IRI’s of the constants to id’s,
getting the professors, getting the students they advise, then translating the id’s
to text.

select * from <lubm> where

{ ?x a ub:Professor ; ub:advisorOf ?y ; ub:telephone ?tel }

is still a pipeline of 4 steps because the two ub:advisorOf and ub:telephone

property retrievals are co-located since they have the same subject and the GSPO
index is partitioned on subject.

The results have to be retrieved in deterministic order for result set slicing.
If there is an explicit order by or an aggregate this is no longer the case and
results can be processed in the order they become available.

Each step of the pipeline takes n inputs of the previous stage, partitions them
and sends a single message to each cluster node involved. If intermediate sets
are large, they are processed in consecutive chunks. Execution of pipeline steps
may overlap in time and generally a step is divided over multiple partitions.



Normally, one thread per query per node is used. Making too many threads
will simply congest the index due to possible mutex waits. On an idle machine,
it may make sense to serve a batch of lookups on two threads instead of one,
though. Further, since requests come in batches, if a lookup requires a disk read,
the disk read can be started in the background and the next index lookup started
until this too would need disk and so on. This has the benefit of sorting a random
set of disk cache misses into an ascending read sequence.

8 Distributed Pipe and Map-Reduce

As said before, RDF queries operate with id’s but must return the correspond-
ing text. This implies a partitioned function call for each result column. Vir-
tuoso SQL has a generic partitioned pipe feature. This takes a row of func-
tion/argument pairs, partitions these by some feature of the arguments and
returns the results for each input row once all the functions on the row have
returned. This may be done preserving order or as results are available. It is
possible also to block waiting for the whole pipe to be empty. The operations
may have side effects and may either commit singly or be bound together in a
single distributed transaction.

Aside returning a result, the partitioned pipe function may return a set of
follow up functions and their arguments. These get partitioned and dispatched
in turn. Thus this single operation can juggle multiple consecutive map or reduce
steps. There is a SQL procedure language API for this but most importantly,
the SQL compiler generates these constructs automatically when function calls
occur in queries.

9 Inference for the Web, The Blessing and Bane of

SameAs

When there is a well understood application and data is curated before import,
entailed facts may often be forward chained and identifiers made consistent.
In a multiuser web scenario, everybody materializing the consequences of their
particular rules over all the data is not possible. Thus inference must take place
when needed, not in anticipation of maybe being needed sometime.

Subproperties and subclasses are easy to deal with at query run time. Given
the proper pragmas, Virtuoso SPARQL will take

{ ?x ub:Professor . ?x ub:worksFor ?dept }

and generate the code for first looping over all subclasses of ub:Professor
and then all subproperties of ub:worksFor. This stays a two step pipeline since
the cluster node running the query knows the subclasses and subproperties. With
some luck, assistant professors and full professors will be in a different partition,
thus adding some laterall parallelism to the operation.



The case of SameAs or transitive properties in general, such as part-of,
are more complex. The principal problem is that for a pattern like {<subpart>
part-of <whole>} it is not self evident whether one should go from <subpart>

up or from <whole> down. Also, the cardinalities at each level, as well as the
depth of the tree are hard to guess.

SameAs is specially supported as an intermediate query graph node. It has no
special cost model but it will take all fixed fields of the next join step and expand
these into their SameAs’s, to full transitive closure. The feature is enabled for
the whole query or for a single triple pettern with a SPARQL pragma.

In a cluster situation, it is possible to just init the SameAs expansion when
first reaching the place and to continue with the value one has as normally. In
this event, if there are no SameAs’s, no extra pipeline step is added, the existing
step just gets two more operations one looking for ?sas SameAs ?thing and
the other for ?thing SameAs ?sas. If synonyms are found, they can be fed back
into the step.

10 On Redundancy

A web scale RDF store will inevitably be quite large. One may count 16G of
RAM per machine and about 1 billion triples per 16G RAM to keep a reasonable
working set. 100 billion triples would be 100 machines. Of course, fitting infinitely
many triples on disk is possible but when the memory to disk ratio deteriorates
running queries of any complexity is not possible on-line.

As a basis for the above, one may consider that DBpedia with 198M triples
is about 2M database pages, 16Gb without gzip. If data have strong locality,
then about 5 times this could be fitted on a box without destroying working set.

As machines are multiplied failures become more common and failover be-
comes important.

We address this by allowing each logical partition to be allocated on multiple
nodes. At query time, a randomly selected partition is used to answer the query
if the data is not local. At update time all copies are updated in the same trans-
action. This is transparent and is used for example for all schema information
that is replicated on all nodes.

Storing each partition in duplicate or triplicate has little effect on load rate
and can balance query load. Fault tolerance is obtained as a bonus.

At present, the replicated storage is in regular use but a special RDF adap-
tation of this with administration automatic reconstruction of failed partitions
etc. has to be done.

11 Some Metrics

11.1 Load

When loading data at a rate of 40 Ktriples/s, the network traffic is 170 mes-
sages/s and the aggregate throughput is 10MB/s. Since the load is divided over



all node-node connections evenly there is no real network congestion and scale
can be increased without hitting a network bottleneck.

11.2 Query

We have run the LUBM query mix against a 4 process Virtuoso cluster on one 4
core SMP box. With one test driver attached to each of the server processes, we
get 330% of 400% server CPU load on servers and 30% on test drivers. During
the test, the cluster interconnect cross sectional traffic is 1620 messages/s at
18MB/s while the aggregate query rate is 34 queries/s.

We see that we are not even near the maximum interconnect throughputs
described earlier and that we can run complex queries with reasonable numbers
of messages, about 1620/34 = 47 messages per query. The count includes both
request and response messages.

The specifics of the test driver and query mix are given at [7]. The only
difference was that a Virtuoso 6 Cluster was used instead.

12 Linked Data Applications

As of this writing, OpenLink hosts several billion triples worth of linked open
data. These are being transferred to Virtuoso 6 cluster servers as of the time of
this writing. In addition, the data aggregated from the web by Zitgist are being
moved to Virtuoso 6 cluster. Experiments are also being undertaken with the
Sindice semantic web search engine.

13 Future Directions

The linked data business model will have to do with timeliness and quality of
data and references. Data are becoming a utility. Thus far there has been text
search at arbitrary scale. Next there will be analytics and meshups at web scale.
This requires a cloud data and cloud computing model since no single data
center, of Google, Yahoo or any other can accommodate such a diverse and
unpredictable load. Thus the ones needing the analysis will have to pay for the
processing power but this must be adaptive and demand based.

Our work is to provide rapid deployment of arbitrary scale RDF and other
database systems for the clouds. This involves also automatic partitioning and
repartitioning as mentioned earlier. Google and Amazon have work in this di-
rection but we may be the first to provide Bigtable- or Dynamo-like automatic
adaptation for a system with general purpose relational transaction semantics
and full strength query languages.

14 Conclusions

Aside this, adapting query planning cost models to data that contains increas-
ing inference will be relevant for backward chaining support of more and more



complex inference steps. Also, we believe that common graph algorithms such as
shortest path, spanning tree and travelling salesman may have to become query
language primitives because their implementation in a cluster environment is
non-trivial to do efficiently.

15 Appendix A — Metrics and Environment

We use version 2 of DBpedia[3] as a sample data set for RDF storage space unless
otherwise indicated. When CPU speeds are discussed below, they have been
measured with a 2GHz Intel Xeon 5130 unless otherwise indicated. Networks
are Gbit ethernet with Linksys switches.

References

1. Orri Erling: Declaring RDF Views of SQL Data
http://www.w3.org/2007/03/RdfRDB/papers/erling.html

2. Orri Erling, Ivan Mikhailov: RDF Support in the Virtuoso DBMS. In Franconi
et al. (eds), Proc. of the 1st Conference on Social Semantic Web, Leipzig, Ger-
many, Sep 26-28, 2007, CEUR Proceedings, ISSN 1613-0073, CEUR-WS.org/Vol-
301/Paper 5 Erling.pdf

3. Sren Auer, Jens Lehmann: What have Innsbruck and Leipzig in common? Extracting
Semantics from Wiki Content. In Franconi et al. (eds), Proceedings of European
Semantic Web Conference (ESWC07), LNCS 4519, pp. 503517, Springer, 2007.

4. Oracle Real Application Clusters.
http://www.oracle.com/technology/products/database/clustering/index.html

5. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, et al.: Bigtable: A Distributed Storage
System for Structured Data. labs.google.com/papers/bigtable-osdi06.pdf

6. Giuseppe DeCandia, Deniz Hastorun, Madan Jampani et al: Dynamo: Amazon’s
Highly Available Key-value Store.
www.scs.stanford.edu/08sp-cs144/sched/readings/amazon-dynamo-sosp2007.pdf

7. Orri Erling: Virtuoso LUBM Load
www.openlinksw.com/dataspace/oerling/weblog/Orri%20Erling%27s%20Blog/1284

8. Orri Erling: Advances in Virtuoso RDF Triple Storage (Bitmap Indexing)
virtuoso.openlinksw.com/wiki/main/Main/VOSBitmapIndexing

9. Data set for the Billion Triples Challenge www.cs.vu.nl/p̃mika/swc/btc.html


